CONTENTS

1	Prol	ogue	1
	1.1	Crossing Bridges	1
	1.2	Intractable Itineraries	5
	1.3	Playing Chess With God	8
	1.4	What Lies Ahead	10
	1.5	Problems	11
	1.6	Notes	14
2	The Basics		17
	2.1	Problems and Solutions	17
	2.2	Time, Space, and Scaling	21
	2.3	Intrinsic Complexity	26
	2.4	The Importance of Being Polynomial	28
	2.5	Tractability and Mathematical Insight	33
	2.6	Problems	33
	2.7	Notes	41
3	Insights and Algorithms		48
	3.1	Recursion	49
	3.2	Divide and Conquer	50
	3.3	Dynamic Programming	61
	3.4	Getting There From Here	68
	3.5	When Greed is Good	74
	3.6	Finding a Better Flow	79
	3.7	Flows, Cuts, and Duality	83
	3.8	Transformations and Reductions	85
	3.9	Problems	87
	3.10	Notes	104
4	Needles in a Haystack: the Class NP		111
	4.1	Needles and Haystacks	112
	4.2	A Tour of NP	114
	4.3	Search, Existence, and Nondeterminism	128
	4.4	Knots and Primes	134
	4.5	Problems	141
	4.6	Notes	146

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

		CONTENTS	vii
5	Who	o is the Hardest One of All? NP-Completeness	149
	5.1	When One Problem Captures Them All	150
	5.2	Circuits and Formulas	152
	5.3	Designing Reductions	156
	5.4	Completeness as a Surprise	169
	5.5	The Boundary Between Easy and Hard	178
	5.6	Finally, Hamiltonian Path	187
	5.7	Problems	188
	5.8	Notes	196
6	The	Deep Ouestion: P vs. NP	201
	6.1	What if P=NP?	202
	6.2	Lower Bounds Are Hard	210
	6.3	Diagonalization and the Time Hierarchy	213
	6.4	Possible Worlds	216
	6.5	Natural Proofs	221
	6.6	Problems in the Gap	228
	6.7	Nonconstructive proofs	232
	6.8	The Road Ahead	243
	6.9	Problems	245
	6.10	Notes	253
7	The	Grand Unified Theory of Computation	259
	7.1	Babbage's Vision and Hilbert's Dream	261
	7.2	Universality and Undecidability	267
	7.3	Building Blocks: Recursive Functions	278
	7.4	Form is Function: the λ -Calculus	288
	7.5	Turing's Applied Philosophy	298
	7.6	Computation Everywhere	305
	7.7	Problems	327
	7.8	Notes	335
8	Opti	imization and Approximation	347
	8.1	Three Flavors of Optimization	348
	8.2	Approximations	351
	8.3	Inapproximability	362
	8.4	Jewels and Facets: Linear Programming	369
	8.5	Hunting with Eggshells	393
	8.6	Algorithmic Cubism	404
	8.7	Trees and Tours: the Polyhedral Perspective	412
	8.8	Solving Hard Problems in Practice	417
	8.9	Problems	430

Copyright Oxford University Press 2010

viii	CONTENTS	
	8.10 Notes	449
9	Memory, Paths, and Games	459
-	9.1 Welcome to the State Space	460
	9.2 Show Me The Way	464
	9.3 LOGSPACE-Completeness	470
	9.4 Middle-First Search and Nondeterministic Space	474
	9.5 You Can't Get There From Here	477
	9.6 PSPACE, Games, and Quantified SAT	480
	9.7 Games People Play	490
	9.8 Symmetric Space	501
	9.9 Problems	503
	9.10 Notes	511
10	Randomized Algorithms	516
	10.1 Foiling the Adversary	517
	10.2 The Smallest Cut	520
	10.3 The Satisfied Drunkard: Walk-SAT	522
	10.4 Solving in Heaven, Projecting to Earth	526
	10.5 Games Against the Adversary	532
	10.6 Fingerprints, Hash Functions, and Uniqueness	539
	10.7 The Roots of Identity	548
	10.8 Primality	551
	10.9 Randomized complexity classes	558
	10.10 Problems	562
11	Interaction and Pseudorandomness	581
	11.1 The Tale of Arthur and Merlin	582
	11.2 The Fable of the Chess Master	596
	11.3 Probabilistically Checkable Proofs	603
	11.4 Pseudorandomness and Derandomization	618
	11.5 Problems	633
12	Random Walks and Rapid Mixing	647
	12.1 A Random Walk in Physics	647
	12.2 Equilibrium	653
	12.3 Equilibrium Indicators	658
	12.4 Coupling	661
	12.5 Coloring a Graph, Randomly	664
	12.6 The Spectral Gap	673
	12.7 Flows of Probability	677
	12.8 Burying Ancient History: Coupling from the Past	684

Copyright Oxford University Press 2010

	CONTENTS	
	12.9 Mixing in Time and Space	699
	12.10 Expanders	704
	12.11 Problems	
	12.12 Notes	737
13	Counting, Sampling, and Statistical Physics	749
_	13.1 Spanning Trees and the Determinant	751
	13.2 Perfect Matchings and the Permanent	757
	13.3 The Complexity of Counting	761
	13.4 From Counting to Sampling, and Back	768
	13.5 Random matchings and approximating the permanent	775
	13.6 Planar Graphs and Asymptotics on Lattices	785
	13.7 Solving the Ising Model	796
	13.8 Problems	806
	13.9 Notes	825
14	When Formulas Freeze: Phase Transitions in Computation	830
	14.1 Experiments and Conjectures	831
	14.2 Random Graphs, Giant Components, and Cores	838
	14.3 Equations of Motion: Algorithmic Lower Bounds	852
	14.4 Magic Moments	859
	14.5 The Easiest Hard Problem	871
	14.6 Believe It Or Not: the Physics Approach	880
	14.7 Clustering and Condensation	892
	14.8 Problems	893
	14.9 Notes	909
15	Quantum Computation	916
	15.1 Particles, Waves, and Amplitudes	918
	15.2 States and Operators	921
	15.3 Spooky Action at a Distance	932
	15.4 Algorithmic Interference	940
	15.5 Cryptography and Shor's Algorithm	948
	15.6 Graph Isomorphism and the Hidden Subgroup Problem	964
	15.7 Quantum Haystacks: Grover's Algorithm	972
	15.8 Quantum Walks	980
	15.9 Problems	991
	15.10 Notes	1010
16	Epilogue	1023
A	Mathematical Tools	1024

Copyright Oxford University Press 2010

х

A.1	Story of O	1024
A.2	Approximations and Inequalities	1027
A.3	Chance and Necessity	1029
A.4	Dice and Drunkards	1036
A.5	Concentration inequalities	1040
A.6	Asymptotic Integrals	1045
A.7	Groups, Rings, and Fields	1047
A.8	Problems	1053
Bibliography		1060
Index		1106

Copyright Oxford University Press 2010

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --